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Abstract
Vicinal Au(111) surfaces exhibit periodic faceting within a wide range of miscut angles. There,
the system segregates two alternating phases with different step lattice constants dw and dn.
Using a curved crystal surface that allows a smooth variation of the surface orientation, we have
studied, as a function of the miscut angle, the evolution of Au(111) faceted structures by
scanning tunneling microscopy, and their electronic surface states by angle-resolved
photoemission. We observe that surface bands reflect the two-phase character of the faceted
system, i.e. we find dw- and dn-like states that evolve accordingly to the faceted structure. Using
a photoemission calculation we prove that the apparently complex topology hides relatively
simple physics, i.e. the same free-electron-like dispersion and repulsive step scattering that
feature surface bands in stepped noble metal surfaces. On the grounds of such simulations, we
discuss the possible interference of the electronic energy in the delicate free energy balance that
determines the critical size of reconstructed (dw) and unreconstructed (dn) terraces during Au
faceting.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Vicinal surfaces with periodic arrays of steps and terraces
are among the simplest lateral nanostructures. They
are attractive as playgrounds for testing the fundamental
properties of electrons at one- or two-dimensional (1D or
2D) superlattices [1–5], such as wavefunctions [6, 7], and
useful as growth templates for self-assembled arrays of
nanostructures [7–11]. The vicinal surface is simply defined by
the tilt angle, or miscut α, with respect to the high symmetry
direction of the terrace, which determines the average step–
step distance (terrace width) d . In fact, for monatomic height h
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steps, which is the common case in metals, d is simply related
to α by d = h/ sin α. This equation reflects the ability to
readily convert controllable macroscopic angles in the range
of α ∼ 1◦–15◦ into nanoscopic superlattice constants d from
∼100 Å down to ∼10 Å, thereby making vicinal surfaces
convenient growth templates and model superlattices.

Step edges behave as potential barriers for surface
electrons [12]. In vicinal noble metal surfaces with step
arrays scattering at steps gives rise to a rich surface electronic
structure and phenomena that depend on the superlattice
constant d . For example, the Shockley-like surface state that
characterizes these surfaces is observed to evolve from a quasi-
one-dimensional (1D) state to a two-dimensional (2D) band as
a function of d [1, 2]. In fact, vicinal surfaces with relatively
wide (111) terraces exhibit a large step potential, such that
surface states get confined within individual terraces. As
terraces become narrower the step barrier strength is reduced,
allowing surface states to couple from terrace to terrace,
leading to Shockley-like superlattice bands. This d-dependent
variation in the step potential has been traced to the smooth
transformation of surface states into resonances, as the bulk
bandgap projected onto the surface plane, which supports
surface states, vanishes away from the (111) direction [1, 2].
In any case, in a vicinal noble metal surface the characteristic
free-electron-like band of the (111) plane appears broken up
in a series of discrete states or minibands, leading to a surface
state occupation and electronic energy that varies as a function
of d .

Shockley states in noble metal surfaces are characterized
by Fermi wavelengths λF/2 in the range of 15–40 Å [13]. Such
long λF/2 values make (111)-oriented noble metal surfaces
potential candidates to host charge density wave (CDW)-like
instabilities [14]. These have not been observed on bare
surfaces, but they have been proved to exist in overlayers
and superlattices [3, 15, 16]. In the Ag/Cu(111) system the
incommensurability and the extra atomic compression of the
Ag monolayer (ML) is apparently connected to the presence of
a surface CDW [16]. In fact, the Fermi surface in this system
is nested and gapped at the M̄ point of the surface Brillouin
zone. CDW instabilities can be induced in noble metal surfaces
with 1D or 2D arrays of scatterers by selecting the superlattice
constant d that nests the Fermi surface. This allows one to
straightforwardly explore the nature of the structural changes
that arise when nesting conditions are approached. One good
example is that of Ce atoms evaporated on Ag(111) at 4 K [15].
With the appropriate Ce atom concentration one can tune a 2D
CDW, which in turn induces the formation of a structurally
perfect 2D atom superlattice. In vicinal Cu(111) surfaces,
1D Fermi surface nesting can be forced by selecting the step
lattice vector that exactly matches the Fermi wavelength d =
λF/2 [3]. However, d is fixed by the crystal orientation of the
surface, and hence the structural instability associated with the
1D Fermi surface nesting is not clear yet. The case of Au(111)
vicinals is the reverse. The structural instabilities of the step
superlattice are known, namely the two-phase separation or
faceting that affects a characteristic range of miscuts (∼4◦–
10◦) [8], but not the electronic states changes around the
faceting transition. The question is whether or not the faceting

Figure 1. Schematic description of the curved Au(111) surface and
geometry of the spatially resolved ARPES experiment carried out in
the present work. Different surface orientations (α) and step types
(positive and negative α) can be selected around the (111) direction
(center). The sample is oriented with the incidence and the emission
planes parallel and perpendicular to the [1̄10] direction, respectively.
The size of the light spot along [112̄] samples a finite miscut range
�α.

instability is linked to a surface CDW that could be present in
the system.

Curved crystal surfaces, such as the one sketched in
figure 1, allow a smooth variation of the miscut angle in
the same sample, and hence appear as the rational way to
explore physical and chemical properties of vicinal surfaces
that depend on d . Curved crystal substrates were already used
in the past to determine the role of steps in the chemisorption
of water and oxygen on semiconductor surfaces [17], as well
as to unveil the fundamental contribution of surface steps
to the magnetic anisotropy in thin ferromagnetic films [18].
Using curved noble metal surfaces we generally want to
investigate the dependence of surface states on the lattice
constant d . In particular, we use them to check the existence of
any structural/electronic interplay near the 1D Fermi surface
nesting d = λF/2, which can be approached and accurately
tuned in a curved sample.

In the present study we focus on the case of Au(111).
First, we combine scanning tunneling microscopy (STM) and
angle-resolved photoemission (ARPES) to obtain a thorough
description of the geometry and the electronic states as a
function of α using a curved Au(111) crystal. We precisely
delimit the faceting range, where we measure the characteristic
terrace sizes dw and dn for the two phases. Second, we
complete our previous ARPES work on flat vicinals [2] and
B-type steps [19] by extending the detailed analysis of the
surface states to A-type steps. Our ARPES data prove
that the surface band splits into low and high energy states
for dw and dn phases, respectively, in both A- and B-type
steps, although only A-type steps exhibit coherent electronic
coupling between phases. Finally, we deepen in the theoretical
model introduced in our previous work to simulate and analyze
the photoemission data [19] by expressly calculating the
surface band occupation and the electronic energy for different
step configurations. This complete analysis allows us to
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Figure 2. Top, schematic sideview of the Au(111) curved crystal, indicating the faceted areas. Faceting occurs within ∼4◦–10◦ miscuts for
both A and B sides, although the faceted structure is different in each case. The different atomic packing for A and B steps is also sketched.
Bottom, STM images (topography or current) taken at different positions on the curved crystal as indicated. Negative miscut angles indicate
A-type steps.

discuss in more detail the possible existence of electronic state
instabilities that may have an influence, or even trigger the
faceting transition.

2. Experimental results

The curved Au crystal (Mateck GmbH, Germany) was
mechanically polished defining a α = ±15◦ cylindrical
section (11.6 mm radius) around the [111] direction (α =
0◦). As depicted on top of figure 2, left and right sides of
the crystal correspond to A-({100}-oriented microfacets) and
B-type steps ({111̄} microfacets), respectively. The curved
surface is prepared in vacuum following the standard ion
sputtering plus annealing cycling used for flat crystals. In
order to minimize surface damage, ion sputtering is carried out
with the incidence plane parallel to the surface steps. We have
observed that an extensive sputtering treatment perpendicular
to the steps can significantly alter the curvature of the crystal.
The local surface structure is determined with STM using a

variable temperature set-up (Omicron). STM data have been
analyzed using the WSXM software [20]. Locally resolved
surface bands are measured with ARPES using synchrotron
light from the PGM beamline of the Synchrotron Radiation
Center (SRC) in Stoughton (WI). For ARPES we used a
hemispherical Scienta SES200 spectrometer with energy and
angular resolution set to 25 meV and 0.1◦, respectively, and
p-polarized light with the polarization plane parallel to surface
steps, as shown in figure 1. STM experiments were carried out
at 300 K, whereas ARPES measurements were performed at
150 K.

2.1. Structural analysis of the curved Au(111) surface

At the bottom of figure 2 we show characteristic STM images
taken across the curved Au(111) surface at both the right
side (positive α) and the left side (negative α) of the crystal.
The structures are similar to those observed in regular vicinal
Au(111) crystals with the same α angle [8]. In the faceted
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Figure 3. (a) and (b) Average terrace width d0 measured at different miscut angles (α). Both quantities are determined from STM image
analysis. In the ∼4◦–10◦ faceting range, narrow (dn) terraces maintain a value of ∼14 Å, while large (dw) terraces range between ∼40 Å for
A steps and ∼31 Å for B steps. The solid line represents the d = h/ sin α equation for a regular vicinal surface with monatomic steps.
(c) Normalized terrace width distribution (σ̄ ) plotted as a function of d0, deduced from the same statistical analysis of STM images. Dotted
lines mark the average σ̄ values for dw and dn terraces.

part of the surface, the system exhibits a periodic hill-and-
valley structure of ∼4◦ and ∼10◦ oriented minifacets, i.e. two
different phases of relatively wide (dw) and relatively narrow
(dn) terraces, respectively. As sketched at the top of figure 2,
the periodic superstructure is different for A or B steps. For A-
type steps, the dw phase contains a single terrace whereas steps
form bunches in the dn phase. The 1D lattice is thus defined by
a superlattice constant D = dw + m × dn, where m depends on
the local miscut (m = 0 at ∼4◦ and m = ∞ at ∼10◦). At the B
side, bunches of terraces are formed in both dn and dw phases,
and hence the hill-and-valley periodicity D is much larger for
the same miscut [8].

In both A and B sides faceting is driven by the
characteristic herringbone reconstruction of the Au(111)
plane [21], which is present in dw terraces and absent in the
dn phase. Reconstructed and unreconstructed phases actually
represent the two competing configurations of the system that
give rise to structural instabilities and phase separation at
certain miscuts [8]. The reconstruction of the terraces also
leads to a complex atomic structure at step edges, which in turn
results in rather different step energies at the dw–dn boundary
in A or B sides [22]. The different phase boundary energy
explains the dramatic variation of the faceting wavelength D

from A- to B-type vicinals, shown in figure 2. For A steps,
there is a little energy cost for inserting a dw terrace inside a
dn bunch, and hence the system exhibits the maximum number
of phase boundaries and the minimum periodicity D [23]. For
B steps, the boundary energy is high and the system seeks the
minimum number of boundaries, resulting in the largest size of
the phases, and hence the longest period D.

The curved surface allows one to accurately determine the
faceting range in Au(111) using STM. For this purpose we
have carried out a detailed quantitative analysis of the terrace
size across the curved Au crystal. The results are shown in
figure 3, whereas figure 4 illustrates the analytical process
carried out to analyze every STM image. The image analysis is
performed on individual frames with sizes between 340 × 340
and 20 × 20 nm2, like the one shown in figure 4(a). The
automatic processing of individual STM images extracts the
profile of each line scan and calculates the distance d between
all the neighboring steps. This is repeated in different frames
over a total area of 1 μm2 for each α angle. All d values
obtained for the same α (deduced from the average plane of the
images) are then converted into a probability histogram, which
is fitted with a Gaussian curve, as shown in figure 4(b). The
mean value d0 is given by the center of the fitted curve. The
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Figure 4. (a) Typical STM image used for the analysis in figure 3. It belongs to the B-type surface with 3.75◦ miscut angle. The analysis in
panel (b) shows the distribution of 23 000 terrace widths calculated from the line profiles extracted in different images belonging to this
surface. The terrace width distribution is fitted with a Gaussian curve (black) with center d0 = 36 Å, σ = 3.2 Å and σ̄ = 0.09. (c)–(e) STM
images displaying B-type surfaces with local miscut angle α = 0.8◦ and 1.6◦. The image (e) is a zoom-in of panel (d), as indicated by the
black square. In both sides of the sample, surfaces with 0.5◦ � α � 2◦ miscuts are not well defined on a large scale (∼1 μm). Within such
miscut range we find mixtures of large (111) terraces and irregular step arrays with varying sizes. These surfaces are discarded in the analysis
shown in figure 3.

fit also renders the normalized terrace width distribution (σ̄ )
defined as the ratio of the standard deviation of the Gaussian
and d0 [24]. The analysis is limited to surface areas exhibiting
homogeneous step arrays in the 1 μm scale. This is the case
of most surface areas with miscut angles above 2◦, in both
sides of the crystal. For α < 2◦, the curved surface exhibits
inhomogeneous mixtures of large (111) terraces and irregular
terrace arrays with different sizes (figures 4(c)–(e)) and hence
STM data here are not analyzed.

Figures 3(a) and (b) show the average terrace size (d0) as a
function of the miscut angle (α) in A and B sides, respectively.
For a regular step array, data must follow the expression for the
lattice constant d0 = h/ sin α, which is represented by the solid
line in both figures. At faceted areas, data points deviate from
this curve, thereby delimiting the miscut range of faceting in
Au(111) vicinals. It extends from 3.3◦ to 11◦ in A-type vicinals
and from 4.6◦ to 10.6◦ in the B side. The horizontal dashed
lines prove that, within the respective faceting ranges, dw and
dn are almost constant values, in overall agreement with the
STM analysis carried out by Rousset et al using a set of flat
vicinal crystals [8]. In the B side we find dw = 31 ± 3 Å
and dn = 13.5 ± 1.0 Å in the whole faceting range5. In the
A side both dw and dn decrease slightly as a function of α,

5 dw in the B side slightly differs from our recently published STM
values [19], which were due to an improper calibration.

from dw = 41.0 ± 1.5 Å down to dw = 38.0 ± 1.5 Å and
dn = 14.0 ± 1.0 Å to dn = 13.0 ± 1.0 Å.

In figure 3(c) we plot the terrace size distribution
broadening σ̄ as a function of d0 for the full set of data. In
general, we observe that relatively large terraces are sharply
defined (σ̄ ∼ 0.07), whereas data for small terraces are
scattered around σ̄ = 0.12. We can also observe very low
σ̄ < 0.05 values in large terraces of the A side, i.e. for
|α| < 4◦. In such a low miscut range (below 4◦), the A
side frequently shows terrace sizes around d0 ∼ 40 Å and
80 Å. Moreover, at 2.4◦ we encounter a stable vicinal surface
(see figure 2) that exhibits alternating bunches of terraces with
40 Å and 80 Å size, as predicted by Rousset et al [8].

In the standard elastic model σ̄ can be expressed as a
function of both the long-range step–step interaction strength
and the so-called step stiffness [24]. Stiffer steps are static and
straighter, while softer steps are mobile and distinguished by
frizzy edges in STM images. On the other hand, the interaction
strength depends on the stress energy of the terrace and the
step dipole. These elastic properties vary when Au(111)
terraces reconstruct. As shown in figure 5, dw terraces larger
than 30 Å exhibit fcc/hcp dislocation boundaries, which run
either parallel (A side) or perpendicular (B side) to the steps.
Such reconstructions, which are reminiscent of the (22 ×√

3) herringbone that characterizes the Au(111) surface [21],
disappear completely in small dn terraces. Due to the presence
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Figure 5. STM images (43 × 43 nm2) showing the herringbone reconstruction on the (111) surface (center) and its transformation at A and B
sides. The intensity is saturated at step edges, which appear as bright horizontal lines. On A-type vicinals (left, surface at α = −1.7◦) with
terrace width �40 Å the discommensuration lines run parallel to the step edges, as indicated by the solid line. In contrast, on B-type vicinals
(right, surface at α = +1.8◦) of terrace width �32 Å the reconstruction lines are perpendicular to the steps.

of hcp and fcc domains, the atomic arrangement of the step
edges is different for dw and dn phases. In summary, all
parameters that determine σ̄ , i.e. the step stiffness, the step
dipole and the terrace stress are changing from reconstructed
dw to unreconstructed dn phases. Therefore, one can naturally
expect different σ̄ values at both sides of the faceted range,
as indeed proved in figure 3(c). However, σ̄ is found to
vary in a similar way (larger values for smaller terraces) in
Cu(111) vicinal surfaces that show no terrace reconstruction.
This is not contradictory with the Au(111) case, but rather
points to the fact that the terrace reconstruction observed in
Au(111) vicinals is not the reason but rather the particular
consequence of a general property that may affect all vicinal
surfaces, namely the variation of the elastic properties as a
function of the miscut angle.

Vicinal surfaces with terrace reconstructions, such as
the herringbone in Au(111), generally exhibit faceting
instabilities [24]. As schematically plotted in figure 6, one
can use the free energy curve of a vicinal surface to predict
segregation of reconstructed dw and unreconstructed dn facets.
The surface free energy is defined for both reconstructed and
unreconstructed surfaces as a function of the α angle in the
following way:

γ (α) = γ0 + β

h
| tan α| + g| tan α|3 (1)

where γ0 represents the surface energy of the terrace, β the
step energy and g the step–step interaction parameter. Making
the reasonable assumption that γ0 is lower for reconstructed
dw terraces, β lower for dn steps, and that g is the same for
both phases, then the free energy curves for reconstructed (γr)
and unreconstructed (γunr) surfaces intersect at a critical α, as
shown in figure 6. The phase segregation bypasses this critical
miscut. The faceting angles α(dn) and α(dw) are determined
by finding the maximum convexity of the lower envelope [8],
i.e. by the tie line tangent to both curves depicted in figure 6.
Conversely, using faceting angles as inputs one may estimate
the differences in both γ0 and β between dw and dn phases.
Such differences fall in the meV/atom range, either for A and
B faceting, as found by Rousset et al [8]. Therefore small

Figure 6. Surface free energy for reconstructed (solid curve) and
unreconstructed Au(111) vicinals (dashed curve). Curves have been
generated with equation (1) using, for the sake of clarity, arbitrary γ0,
β and g values. Phase segregation into dw and dn phases (dashed
vertical lines) is predicted around the crossing point of the two
curves following the tie bar construction (dotted line).

deviations from the constant elastic parameters assumed in
equation (1) may determine new faceting angles. For example,
the herringbone reconstruction in terraces defines magic sizes
and hence additional surface energy minima [8]. One must
also include non-elastic contributions to the surface free energy
in equation (1), thereby altering the tie bar construction in
figure 6. And finally, as we discuss below, the electronic energy
adds fine ripples to the total γ (α) curve in figure 6, i.e. new
convexity points that can modify the faceting range.

2.2. Evolution of electronic states across the curved Au(111)
surface

In order to investigate the connection between surface states
and faceting we have measured surface bands across the curved
Au(111) crystal using ARPES. For laterally resolved ARPES,
the size of the monochromatic synchrotron light is reduced
along the [11̄2̄] direction to 100 μm, by means of the exit slits
of the beamline. Given the curved shape of the surface, the
light beam samples a small arc for a given α value, as sketched
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Figure 7. Surface state band measured with a photon energy of 21.2 eV for (a) a plane Au(788) and (b) and (c) the corresponding ±3.5◦
miscuts in the curved crystal. The second derivative of the photoemission intensity is displayed. Bands are fitted using a one-dimensional
Kronig–Penney model (solid lines). (d) Photoemission spectra taken at the bottom of the surface band for Au(788) (red) and in the curved
crystal (black, α = 0◦ and blue, α = 3.5◦). At α = 3.5◦ miscut, the spectrum in the curved sample is slightly broader than that in the flat
surface, due to the finite sampling effect of the beam (see figure 1).

in figure 1. This defines an effective miscut broadening �α �
±0.25◦ up to α ∼ 8◦ that becomes somewhat larger at the
edges of the crystal. �α is therefore slightly larger than
the accuracy achieved during mechanical polishing and Laue
orientation (�α < ±0.2◦). In figure 7 we test the lateral
resolution of the ARPES experiment by comparing the surface
state bands measured for a flat Au(788) crystal (α = 3.5◦) [2],
and for the curved crystal at α = ±3.5◦ at B and A sides,
respectively. The wavevector scale is referred to the center of
the first Brillouin zone in the local (nominal) surface plane,
i.e. kx = ((h̄ω − 	 − EB)2m/h̄2)1/2 × sin(θ − α), where
(h̄ω − 	 − EB) is the electron kinetic energy, m is the free-
electron mass and θ is the emission angle with respect to the
(111) direction. In order to enhance weak features, data are
displayed as second derivative image plots in panels (a)–(c).
In the (d) panel we compare the surface state spectrum at
the bottom of the band in flat and curved surfaces. In (a)–
(c) we find a complete equivalency, i.e. all bands exhibit the
same topology. In figure 7(d) we detect a slightly broader
peak for the curved crystal, as expected from the effectively
larger �α originated by the beam size. Taking this small
difference into account, figure 7 generally demonstrates that
the curved surface approach is valid to test surface states in
vicinal surfaces using laterally resolved ARPES.

Surface bands of figures 7(b) and (c) are particularly
important, since they belong to the lower onset of the faceting

region at A and B sides. They show evident signatures of
superlattice scattering, namely band folding with 2π/d vectors
and small ∼0.1–0.15 eV energy gaps. The solid lines in
figures 7(a)–(c) are fits to the bands using a Kronig–Penney
model [1, 2]. In all cases, the fit places the first superlattice gap
at ∼EF − 0.3 eV and the second gap at EF. As shown in the
vicinal Cu(111) case [3], a Fermi gap can lead to a significant
reduction in the electronic energy per surface atom compared
to a non-gapped band. As we shall discuss later, Fermi gaps in
figure 7 also introduce significant variations in the electronic
energy as a function of α, which add to the total free energy in
equation (1) and modify the tie bar construction in figure 6.

Figure 8 displays the evolution of the surface bands across
the faceted portion of the curved sample. The photon energy
is set to hν = 42 eV to better visualize step (d) and faceting
(D) umklapps. In the top and bottom panels we observe the
regular umklapps that characterize the 1D step arrays at upper
and lower faceting onsets, i.e. free-electron-like bands folded
with 2π/dw and 2π/dn umklapp vectors, respectively. Starting
from the top panels, the faceted region is thus defined by a
progressive build-up of the high energy dn emission and the
simultaneous quenching of the low energy dw band. This
behavior appears rather clear in B steps, where the large size of
individual facets leads to an incoherent superposition of dn and
dw bands. The surface bands in the faceted region of the A side
look very different. We note the presence of a (progressively

7
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Figure 8. Surface bands across the faceted region of the curved crystal. Photoemission intensity maps correspond to the miscut angles
indicated on the bottom right. kX is the wavevector perpendicular to the step array on the local surface plane. On the B side (left panels), the
spectrum smoothly evolves from dw (top) to dn (bottom) bands, with mixed contributions at intermediate miscuts. In the A side (right panels),
the surface band splits into a quasi-1D state (low energy) and a 2D band (high energy). Solid lines are parabolic fits to dw and dn bands at the
onsets of faceting. The dotted parabolas mark the position of second-order umklapps.

shrinking) 2π/D faceting umklapp, which smoothly evolves
from the 2π/dw step umklapp at the −2.9◦ onset. The 2π/D
umklapping proves the facet–superlattice character of surface
states in the A side. Despite this superlattice nature, low and
high energy features possess a dominating dw and dn character,
respectively, as proved in a thorough spectral analysis of
surface bands performed in a flat vicinal surface with A-type

faceting [2]. In fact, as marked in the −6.4◦ spectrum, we can
single out a flat, quasi-1D band at ∼ − 0.4 eV, separated from
the quickly dispersing 2D umklapp branches that cross EF. As
we shall discuss below, the lower energy, weakly dispersing
feature belongs to a surface state with a large probability inside
the dw terrace, whereas the strongly dispersive bands that cross
EF have the dominant spectral weight located at dn bunches.

8
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Solid lines in figure 8 represent parabolic envelopes that
fit dw and dn bands, respectively, at faceting onsets. dw bands
exhibit folding with gw = 0.185 ± 0.015 Å

−1
and gw =

0.155±0.015 Å
−1

umklapp vectors in B and A steps, leading to
dw = 34 ± 3 Å and dw = 41 ± 3 Å, respectively. Such values
are slightly larger than those determined by STM in figure 3
(dw = 31 Å and dw = 38 Å, respectively). Although error bars
in STM and ARPES values still overlap, there is a tendency
to obtain smaller g values from ARPES umklapps due to the
terrace size broadening [3], in particular with umklapps that
lie too close, such as dw bands. In contrast, the fit to umklapp
bands in the lower panels of figure 8, which renders the same
gn = 2π/dn = 0.45 ± 0.015 Å

−1
vector for A and B sides is

in perfect agreement with the dn ∼ 14 Å value found by STM.
At the B side, with large dw and dn phases, we observe

that both gw and gn are constant values in all spectra, reflecting
the stability of dw and dn lattice constants across the faceting
region proved in figure 3. The dw umklapps in figure 8 appear
nested at the Fermi energy with 4π/d superlattice vectors
(dotted lines). This indicates that the second superlattice gap
in dw bands lies at EF. Both first and second superlattice gaps
can only be observed in second derivative images and using
a lower photon energy, e.g. hν = 21 eV (figure 7), which
provides better energy and momentum resolution. The arrows
in figure 8 join folded parabolas at the Fermi energy defining
the Fermi vector 2kF for each phase. Since dw bands are nested
near EF, then 2kF ∼ gw. Interestingly, dn bands, which are not
nested at EF, exhibit a similar 2kF = 0.180±0.015 Å

−1
. Thus,

we may conclude that, within error bars, 2kF ∼ gw = 2π/dw

is the same for both dw and dn phases of the B side.
Band minima in step bands lie at surface zone boundaries

±(n + 1)/2 × π/d [1], and hence the first Bragg reflection
occurs at ̄, i.e. kx = 0. Such a nesting point is located below
EF for dw bands (see figure 7) and above EF for dn bands (not
visible). In order to shift the first Bragg reflection (and hence
the first superlattice gap) to EF, the lattice constant should be
changed to d ∼ 16 Å. This critical d value is similar for
Cu(111) vicinals [3]. In the Au(111) curved surface the 16 Å
terrace size, and hence the ̄ nesting at EF, is bypassed in
the faceting transition. This phenomenon is nicely shown in
figure 9(a), where we plot the Fermi level intensity measured
with ARPES as a function of kx and across the curved crystal.
The kx scale is referred to the nominal ̄ = 2π/d symmetry
point. The faceted regions are delimited with dotted lines. In
the B side, the intensity maxima around ̄ define a neck-like
feature that reflects the jump from dw to dn bands with constant
2kF vector. Due to faceting, ±π/d branches do not merge
at ̄, i.e. faceting prevents the collapse of the Fermi surface
(kF = 0). Interestingly, a similar ̄ neck is observed in the
A side as well, despite its different faceted superstructure (see
figure 2). In this case the lack of intensity at ̄ is explained by
the physical nature of the 2D-like band that crosses EF.6 This
is shown in the wavefunction model sketched in figure 9(b),
which in turn is deduced from the photon-energy-dependent
spectral intensity measured in ARPES [2]. The higher energy,

6 The spectral intensity at ̄ is entirely provided by the quasi-1D state of dw

terraces, but this lies well below the Fermi energy.

Figure 9. (a) EF photoemission intensity map for the Au curved
surface, as a function of α and kx . The dashed lines mark the 4◦–10◦
faceting range, which is characterized by a neck-like feature around
̄ in both sides. In the B side this neck images the transition from dw

to dn bands, skipping first zone nesting (see the text). In the A side,
the neck reflects the minimum in the spectral density of the
superlattice band that characterizes the faceted structure (see the
text). (b) Wavefunction model for 1D and 2D states for A-type
faceting, as deduced from the analysis of the spectral density map of
surface states in A-type vicinals [2]. (See color figure online.)

2D state in A-type vicinals is only modulated at step bunches
with the spatial frequency dn. Therefore, we expect, across the
whole A faceting range, spectral density maxima in EF similar
to those of dn bands in figure 8, i.e. away from ̄ and close to
±(n + 1)/2 × π/dn, thereby defining the ̄ neck of figure 9.

3. Discussion

The apparent complexity of the surface band structure for the
Au(111) faceted surfaces measured in figure 8 only stems
from the particular geometry of the step array. This is proven
by the photoemission intensity maps calculated in figure 10.
Our theoretical model computes, within the dipole approach,
the photoemission matrix element, or transition probability,
assuming free-electron waves as final states and the Shockley
surface state as the initial state [6]. For the final state, we
take into account the phase of the photoelectron, which gives
rise to diffraction due to the different heights of the terraces.
On the other hand, the Shockley surface state is calculated
using a model crystal potential along the perpendicular [111]
direction (z direction). Parallel to the surface (x, y plane),
we assume free-electron-like dispersion in the y direction and
scattering by a periodic step lattice in the x direction, with
barrier potentials U0 × b located at step edges. U0 × b,
the effective mass m∗, as well as the reference energy E0

of the terraces (i.e. the minimum of the surface band for a
surface without steps) are free parameters determined by fitting
separately dw and dn bands at faceting onsets, i.e. in the top and
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Figure 10. Calculated photoemission intensity maps for (a) A-type and (b) B-type faceted Au(111), using the finite systems respectively
sketched on top, and 1 eV × Å barriers at step edges. Red and blue bands correspond to emission from dw and dn phases, respectively. In the
A-type side, dw bands are 1D QW states of the single dw terrace, whereas dn bands exhibit D umklapping. For B-type steps, the large size of
the phases is enough to develop distinct dn and dw surface bands.

bottom panels in figure 8. The best fits are obtained using the
same U0 × b = 2 Å × 1 eV barrier potential in all cases7,
m∗ = 0.27me (close to the value found for Au(111) [13]), and
different E0 = −0.53 eV and E0 = −0.42 eV for dw and
dn terraces, respectively. On top, we sketch the periodic step
arrays calculated in each case. For the A side, we consider
a periodic succession of six small dn = 14 Å terraces and a
single dw = 40 Å terrace, i.e. a nominal miscut α = −7.5◦.
For the B side, we assume 30 small dn = 14 Å terraces
embedded between two 30 × dw facets, with dw = 34 Å, i.e.
α = +5.6◦. To clarify the nature of the different states we
have systematically varied the relative proportion of dw and dn

terraces in the array. This allows us to single out dw and dn

features, which are plotted as blue and red bands, respectively.
The similarity of the model with the results in figure 8

is remarkable. The matrix element calculation modulates the
intensity of the different branches in a way similar to that
observed in the experiment, making the comparison between
data and model more simple. This also allows us to further
demonstrate the dw or dn nature of different band features in
figure 8. In the A-side plot, D umklapping is rather clear,
although only those bands around the main parabolic envelope
appear more intense, as observed in figure 8. In the B-side
calculation, both dw and dn phases are large enough to develop
the separate bands observed in figure 8. The different type
of faceting described in figure 2 is reflected in the distinct
topology of the dw-like (blue) states of figure 10. The large

7 For the sake of simplicity, we have not taken into account the changes in
step potential that arise as a function of the miscut [1]. Such barrier variations
would not change the main conclusions of this work. However, a proper fit to
the data does require an offset �E0 from dw to dn terraces in both the A and
B sides. This offset actually represents a change in the terrace energy E0 from
dw to dn terraces. Such a change in E0 has not been considered in previous
analysis of ARPES data in vicinal surfaces (see, for example, [1]), although it
could be expected, given the important changes in elastic constants suggested
from figure 3(c).

dw phase at the B side exhibits dispersive behavior and dw

zone folding. In contrast, the single dw terrace at the A side
originates non-dispersing 1D quantum well levels below the dn

band, i.e. the N = 1 level at EB = 0.48 eV, and the N = 2
that barely splits at the bottom of the 2D band at EB ∼ 0.32 eV.
Note that the highly dispersive states that cross EF in the A-side
calculation of figure 10, left, have a spectral weight distribution
similar to that of the fully developed dn bands of the B side
shown in figure 10, right, as expected from their same dn

nature. In particular, the spectral intensity maxima at EF are
located at the same kx values in both figures. This explains
the Fermi surface neck that characterizes the faceting range
in figure 9(a), which in turn confirms the wavefunction model
depicted in figure 9(b).

Given the success of the photoemission calculation to
reproduce the ARPES data of figure 8, we can use it to
investigate the possible influence of surface states and hence
the electronic energy in the faceting transition. For U0 × b
and E0 values that fit the data, the program can calculate the
2D surface band structure for smoothly varying step array
configurations, which in turn can be integrated to obtain
the corresponding electronic energy variation, and hence its
possible influence in the free energy and tie bar construction
of figure 6. We will discuss two different phenomena, first
the electronic energy in the step lattice as a function of α, and
second the electronic energy upon insertion of a single dw or dn

terrace of varying size inside dn and dw bunches, respectively.

3.1. Fermi gap and electronic energy instabilities for
d = 34 Å

Fermi energy gaps in step lattices are expected to influence
the electronic energy of the system. Comparing gapped and
ungapped bands with the same ground state energy (band
minimum), a Fermi gap leads to a net electronic energy
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Figure 11. (a) Photoemission intensity maps calculated for step superlattices of varying d terraces. The second gap lies above and below EF

for d = 32 and 36 Å, and straddles EF for d = 34 Å (middle panel). (b) Number of surface electrons per surface atom De and (c) electronic
energy Ee calculated as a function of tan α (bottom scale) and d (top scale). The shaded area marks the terrace size range that is never
observed, due to faceting. Outside this range, the second Fermi gap leads to occupation maxima in De and inflection points in Ee around
dw = 34 Å.

gain [3]. However, such a comparison is not realistic, since
the band bottom in the vicinal surface is shifted up due to
repulsive scattering at steps. In other words, the energy
reduction prompted by the Fermi gap in a vicinal surface is
partly compensated by the upper shift of the surface band
with respect to that in the (111) surface. One should instead
study the electronic energy variation for vicinal surfaces with
different lattice constant d . This is done in figure 11, where
we calculate the band structure and the subsequent density of
states De and electronic energy Ee for 1D step arrays of varying
d , using the same step barrier U0 ×b = 1 eV×2 Å and terrace
energy E0 = −0.53 eV in all cases. In the three panels in
figure 11(a) we illustrate the changes in the band structure for
different d sizes. The second superlattice gap crosses the Fermi
energy for d = 34 Å. Around this d value, we therefore expect
changes in De and Ee of the system. These are represented in
figures 11(b) and (c), respectively, as a function of the miscut
tan(α). The electronic energy Ee and the number of electronic
states per surface atom De are numerically obtained using the
following formulae:

De =
∫ 0

E0

N(ε) dε; Ee =
∫ 0

E0

εN(ε) dε (2)

where N(ε) stands for the 2D density of states and ε for the
electronic energy. The integral is performed in the 2D plane,
i.e. bands are calculated for the 1D step potential array along
kx , whereas free-electron-like dispersion is assumed along ky .
In fact, the De curve in figure 11(b) exhibits occupation peaks
at ∼4◦ and ∼7.5◦, i.e. d ∼ 34 Å and d ∼ 17 Å, respectively.

The latter represents the first superlattice gap crossing at EF,
although this never takes place due to the faceting transition
(the faceted area of the crystal appears shaded in figure 11).
The critical ∼4◦ and ∼7◦ points in De are mirrored in the Ee

curve in figure 11(c) as small cusps in a growing function.
To evaluate the impact of the electronic energy in the total
free energy one can compare the average slope of the curve
(�Ee) in figure 11(c) with the slope β/h of the linear term in
equation (1). We find �Ee ∼ 0.4 meV Å

−2
, which represents

only ∼1% of β/h values in vicinal Au(111) [8]. However,
the differences in the elastic constants between reconstructed
and unreconstructed phases in B-type vicinals are extremely
small (�γ0 = 0.7 meV Å

−2
and �β/h = 5.3 meV Å

−2
, [8]),

and hence little variations in β/h can considerably modify the
tie bar of figure 6. Obviously ripples in the electronic energy
are likely to influence a sensitive tie bar in B-type vicinals.
In particular the ∼4◦ critical point in figure 11(c) should be
reflected in the total free energy curve of figure 6 as a new
convexity point that fixes the tie bar at this angle. Therefore
we suggest that the electronic energy is the driving force that
fixes, or simply favors, dw = 34 Å in B-type faceting.

3.2. QW split-off for dw = 37 Å in A-type faceting

As shown in figure 3, A-type faceted vicinals are defined by a
single dw ∼ 40 Å terrace periodically inserted between dn =
14 Å bunches. As discussed above, A-type vicinals possess
a low step free energy that favors single terrace segregation,
but the question arises why the terrace size should have such
a particular dw ∼ 40 Å size. In A-type faceting one cannot

11



J. Phys.: Condens. Matter 21 (2009) 353001 Topical Review

Figure 12. (a) Photoemission intensity maps calculated for the A-type faceted structure with a dw terrace of varying size inserted between
(9 × dn) bunches (dn = 14 Å). The second QW state splits from the bottom of the dn band for dw > 37 Å. (b) The drastic spectral intensity
changes observed in dn bands in the (a) panel are explained by the presence of coupling (decoupling) between dn bunches for dw values below
(above) dw = 37 Å. (c) Electronic energy Ee and occupation De calculated for a dw terrace of varied size inserted between (9 × dn) bunches
(dn = 14 Å), showing a critical point around 37 Å.

consider the electronic energy instability originated by Fermi
gap opening in dw bands, since dw terraces do not form
bunches. On the other hand, the elastic energy analysis for A-
type Au(111) vicinals, including a Frenkel–Kontorova model
to describe the surface reconstruction, does not predict any
minimum or convexity point in the free energy curve at dw ∼
40 Å [8, 22]. The particular dw ∼ 40 Å size in A-type steps
could be linked to kinetic instabilities that arise during surface
annealing and recrystallization. In fact, it has been shown
that segregation of a terrace of critical size dw can induce the
nucleation of another such terrace nearby, and hence to the
propagation of nucleation events [25]. If the local miscut is
preserved, such a nucleation process can indeed explain the
A-type faceted structure sketched in figure 2, i.e. the presence
of periodic dw terraces separated by dn bunches with a total
number of steps that depends on α. However, such a kinetic
phenomenon would still not account for the specific dw ∼ 40 Å
terrace width observed.

In figure 12(a) we show the band structure calculated for
an A-type step lattice structure made of (9×dn) bunches (dn =
14 Å) separated by single dw terraces of variable size. The
images display the energy range around the dn band minimum
(red), and hence the first (N = 1) QW-like level of the dw

terrace at −0.48 eV is not shown. For dw > 37 Å one can
notice drastic changes in the spectrum. The non-dispersing,
N = 2 QW-like feature (blue) splits from the dn-like band.
The latter is also transformed from a single, smooth parabola
for dw < 37 Å into a set of minibands for dw > 37 Å, which

also exhibit a different spectral intensity distribution. Such a
transition can be explained as due to the electronic decoupling
between dn bunches, as depicted in figure 12(b). If the N = 2
QW level overlaps the dn bands, the former broadens and the
latter are coupled from bunch to bunch, leading to a single
extended state of the faceted structure. If the N = 2 state lies
below the dn band, dn electrons are confined within decoupled
bunches, leading to the series of broadened QW levels, i.e. the
minibands observed for dw < 37 Å in figure 12(a). The
remarkable electronic structure and spectral intensity changes
that accompany such N = 2 split-off are reflected in the
electron occupation De and the electronic energy Ee of the
system, as shown in figure 12(c). De exhibits a pronounced
drop below 37 Å, probably due to the upwards shift (size effect
within dn bunches) experimented by the dn band. Since the
dn band crosses EF, an upwards shift leads to a net electronic
energy gain, which explains the minimum in the Ee curve at
37 Å. Although the magnitude of the changes in Ee are very
small compared to those in figure 11, these may be sufficient to
create instabilities in the total free energy, thereby forcing the
system to adopt the dw size at the onset of the N = 2 QW state
split-off that is observed in ARPES (figure 8).

3.3. Fermi energy crossing of QWs for dn = 14 Å

The instabilities that arise in the electronic energy by
segregating a particular dw size inside a dn bunch should
also happen in the reverse case, i.e. for a single dn terrace
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A

Figure 13. Photoemission intensity maps calculated for faceted structures with a varying dn terrace inserted in a dw = 34 Å lattice. The EF

gap supports a dn QW, which becomes occupied around dn = 14 Å.

segregated inside a dw bunch. In such a case, the dn terrace
is the one characterized by discrete states, which may get
confined inside dw bandgaps. Let us consider a dw = 34 Å
lattice with EF gaps. For dn values around 14 Å the first QW
shifts up to EF, and hence inserting a dn ∼ 14 Å terrace inside
the dw ∼ 34 Å bunch leads to QW confinement within the dw

bandgap around EF. This is analyzed in figure 13, where we
fix dw = 34 Å and vary dn. We can indeed observe the dn QW
state inside the Fermi gap for dn values around 14 Å. Moreover,
around dn = 14 Å the QW state crosses EF, thereby changing
dramatically its occupation. Such 1D QW band depletion may
affect faceting kinetics in the vicinity of the dn terrace. In fact,
surface electron removal eliminates the Ehrlich–Schwoebel
barrier for atom diffusion across surface steps [26], which in
turn speeds up interlayer mass transport. On the other hand, the
occupation of the QW band (or the surface state) reduces the
electronic energy, as shown in figure 11. Therefore, dn = 14 Å
appears to be a critical width at which instabilities may arise
due to the competing kinetics (favored by QW band depletion)
and surface energetics (favored by QW occupation).

4. Outlook: growth of nanostructures on curved
surfaces

Vicinal surfaces are particularly attractive to achieve self-
assembled arrays of lateral nanostructures such as stripes,
wires and dots, which usually grow by step decoration during
submonolayer growth [7–11]. Also, vicinal substrates are
useful to obtain single-domain reconstructions or adsorbate
phases that are difficult to single out on flat surfaces with
high symmetry orientations [27–30]. However, growth on
vicinal surfaces exhibit complex kinetics and energetics. For
example, we expect anisotropic diffusion for adsorbates and
step lattice matching restrictions for monolayers. The latter
has been observed to prompt phase separation of well-matched
adsorbate/substrate phases [31–33]. Therefore, in order to
optimize a given adsorbate/vicinal system, the tunability of
the substrate lattice constant d is highly desired. This can be
readily achieved with a curved crystal surface.

In vicinal Au(111) surfaces step edges and terrace
reconstruction patterns define a network for induced site-
selective nucleation. It has been recently shown that highly
regular arrays of metal dots or molecules grow on the vicinal
Au(788) and Au(11 12 12) planes [7, 8, 34]. Using the curved
Au(111) crystal we can explore the growth of quantum dots and
molecular arrays by varying the step size across the sample.
Figure 14 shows the STM images of the Co array formed
after depositing 0.2 ML of Co onto the curved Au(111) crystal
for two different miscuts. Co dots nucleate preferentially at
the dislocations of the herringbone in Au(111) terraces, as
shown in the center of figure 14. In B-type vicinals with
reconstructed terraces it also nucleates at the crossing of the
reconstruction lines and the step edges (figure 14, right panel),
whereas in A-type vicinals they nucleate on terraces at arc-like
herringbone lines (left panel). In both cases Co dots arrange
forming rectangular patterns, whose dimensions can be tuned
by changing the terrace width.

Adsorbates are generally expected to introduce significant
changes in the electronic and elastic energy balance of the
vicinal surface, and hence in its equilibrium morphology.
Upon adsorption, vicinal surfaces often exhibit step bunching
(or debunching) instabilities as well as a variety of faceting
phases that depend on coverage (see, for instance, [27] and
references therein). In figure 15 we analyze the case of Ag
on vicinal Au(111), where the substrate faceting remains but
the faceting structure changes. The curved crystal approach
becomes again ideal to accurately track the change induced by
the adsorption process in the equilibrium configuration of the
system. Figure 15(a) shows the average terrace size measured
with STM across the B side of the curved crystal, whereas (b)–
(f) panels illustrate the characteristic morphology after 1 ML
Ag deposition and annealing to 650 K. The annealing step is
intended to accelerate the faceting kinetics and hence reach the
equilibrium structure, although it gives rise to homogeneous
Ag–Au surface alloying [35]. For the Ag-alloyed surface, the
faceted range extends slightly below and above the critical
angles of the clean substrate. The dn phase remains a sharp 1D
array with dn = 15.5 ± 0.5 Å, i.e. only about one atomic row
larger than dn in the clean substrate. In contrast, the dw phase
is significantly altered. After Ag adsorption and annealing,
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Figure 14. STM images (50 × 50 nm2) of 0.2 ML Co grown at 170 K on the curved Au(111) crystal. On the (111) surface (middle) Co dots
nucleate at dislocations of the herringbone lines (figure 5). On B-type steps (right) they grow at the crossing of the reconstruction lines and the
step edges in fcc areas, while on wide (>75 Å) A-type terraces (left) they sit between step edges and arc-like herringbone lines, as pictured
schematically in the bottom. In all cases they form rectangular lattices with periodicity (right) a = 60 ± 2 Å, b = 72 ± 2 Å and (left)
a = 85 ± 2 Å, b = 95 ± 2 Å.

Figure 15. (a) Terrace width distribution of B-type steps estimated before (orange points) and after (blue points) the deposition of 1 ML of Ag
and followed by a 10 min. annealing at 650 K. (b) and (c) STM images taken at α ∼ +3.5◦ miscut, showing step disordering. (d)–(f) STM
images taken at α ∼ +7◦, illustrating the disruption of the step lattice only at dw phase. (c), (e) and (f) are zoom-outs of the areas indicated in
(b) and (d), respectively.

the dw phase is made of a mixture of two terraces, with an
average terrace size that has increased from ∼32 Å in the clean
substrate (red data points) to 42 ± 3 Å (and also to 87 ± 1 Å)
in the alloyed surface (blue data).

Figure 15(a) suggests the interplay between surface states
and structure also for the alloyed surface. Note in figure 15(c)
that the curved surface exhibits a terrace morphology, i.e. a
herringbone reconstruction analogous to the one observed in
the clean sample. This is due to the fact that Ag–Au alloying

does not change the Au lattice constant [36]. We may therefore
assume a relatively small change in elastic constants compared
to the clean substrate, i.e. a minor change in terrace and step
free energies for vicinal surfaces. On the other hand, Ag
alloying in Au(111) leads to a small shift of the surface state
band towards the Fermi energy, thereby reducing the Fermi
vector kF [37]. For step superlattices, a smaller kF implies a
shorter nesting vector gw = 2kF, i.e. a slightly larger critical
terrace size dw = 2π/gw, exactly as observed in figure 15(a).
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In conclusion, figure 15(a) points again to the influence of
surface states in the faceted structure for the Ag-alloyed curved
surface, although ARPES experiments to quantitatively prove
such a connection are needed.

5. Summary

Using a curved crystal, we have explored the faceting transition
that characterizes Au(111) vicinal surfaces. By means of STM
image analysis we determined the terrace size distribution as
a function of miscut, thereby delimiting the faceting range
in Au(111). This extends over a wide interval of miscuts,
but with fixed terrace widths dw and dn for each of the
phases. Additionally, we studied the surface band structure by
ARPES. The complex topology inside the faceting region can
be understood on the grounds of a photoemission simulation,
which proves the simplicity of the underlying physics, namely
repulsive scattering of quasi-free-electron waves at step edges.
Based on such photoemission simulations, we study the
possible interference of the electronic energy in the free energy
competition between reconstructed (dw) and unreconstructed
(dn) vicinals. We indeed observe that critical terrace sizes
correspond to Fermi energy gapping (dw in B-type steps), 1D
QW state split-off (dw in A-type steps) and 1D QW state
depopulation (dn in A- and B-type steps).

Acknowledgments

We thank Javier Garcı́a de Abajo for providing us with
the codes used in photoemission calculations. The work
is supported through projects of the Basque Government
(IT257-07) and the Spanish Ministerio de Educacion y Ciencia
(MAT2007-63083). The SRC is funded by the National
Science Foundation (award no. DMR-0084402).

References

[1] Mugarza A and Ortega J E 2003 J. Phys.: Condens. Matter
15 S3281

[2] Mugarza A, Schiller F, Kuntze J, Cordón J, Ruiz-Osés M and
Ortega J E 2006 J. Phys.: Condens. Matter 18 S27

[3] Baumberger F, Hengsberger M, Muntwiler M, Shi M,
Krempasky J, Patthey L, Osterwalder J and Gerber T 2004
Phys. Rev. Lett. 92 016803

[4] Baumberger F, Hengsberger M, Muntwiler M, Shi M,
Krempasky J, Patthey L, Osterwalder J and Gerber T 2004
Phys. Rev. Lett. 92 196805

[5] Didiot C, Fagot-Revurat Y, Pons S, Kierren B, Chatelain C and
Malterre D 2006 Phys. Rev. B 74 081404(R)

Malterre D, Kierren B, Fagot-Revurat Y, Pons S, Tejeda A,
Didiot C, Cercellier H and Bendounan A 2007 New J. Phys.
9 391

[6] Mugarza A, Ortega J E, Himpsel F J and Garcı́a de Abajo F J
2003 Phys. Rev. B 67 081404

[7] Didiot C, Pons S, Kierren B, Fagot-Revurat Y and
Malterre D 2007 Nat. Nanotechnol. 2 617

[8] Rousset S, Repain V, Baudot G, Garreau Y and Lecoeur J 2003
J. Phys.: Condens. Matter 15 S3363

[9] Kuhnke K and Kern K 2003 J. Phys.: Condens. Matter
15 S3311

[10] Pratzer M, Elmers H J, Bode M, Pietzsch O, Kubetzka A and
Wiesendager R 2001 Phys. Rev. Lett. 87 127201

[11] Tegenkamp C 2009 J. Phys.: Condens. Matter 21 013002
[12] Bürgi L, Jeandupeux O, Hirstein A, Brune H and Kern K 1998

Phys. Rev. Lett. 81 5370
[13] Reinert F, Nicolay G, Schmidt S, Ehm D and Hüfner S 2001
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